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Summary
Latent class analysis (LCA) has allowed epidemiologists to overcome the practical 
constraints faced by traditional diagnostic test evaluation methods, which require 
both a gold standard diagnostic test and ample numbers of appropriate reference 
samples. Over the past four decades, LCA methods have expanded to allow 
epidemiologists to evaluate diagnostic tests and estimate true prevalence using 
imperfect tests over a variety of complex data structures and scenarios, including 
during the emergence of novel infectious diseases. The objective of this review 
is to provide an overview of recent developments in LCA methods, as well as a 
practical guide to applying Bayesian LCA (BLCA) to the evaluation of diagnostic 
tests. Before conducting a BLCA, the suitability of BLCA for the pathogen of 
interest, the availability of appropriate samples, the number of diagnostic tests, 
and the structure of the data should be carefully considered. While formulating 
the model, the model’s structure and specification of informative priors will affect 
the likelihood that useful inferences can be drawn. With the growing need for 
advanced analytical methods to evaluate diagnostic tests for newly emerging 
diseases, LCA is a promising field of research for both the veterinary and medical 
disciplines.
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Introduction
In recent years, epidemiologists have increasingly applied the 
methods of latent class analysis (LCA) to evaluate diagnostic 
tests and estimate true prevalence with imperfect tests. 
Historically, the accuracy of a diagnostic test, as measured 
by the diagnostic sensitivity (DSe) and diagnostic specificity 

(DSp), was determined by comparison with a reference test, 
often referred to as a ‘gold standard’ (1, 2). However, in 
practice, a reliable reference test with known measures of test 
accuracy does not always exist. Furthermore, it is difficult 
to build sufficiently sized collections of specimens from 
individuals of known disease status that are representative 
of the individuals that will be tested under field conditions. 
In such cases, when only an imperfect reference test or 
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|tPRiors|: a tool for prior elicitation and
obtaining posterior distributions of true
disease prevalence
Konstantinos Pateras* and Polychronis Kostoulas

Abstract
Background: Tests have false positive or false negative results, which, if not properly accounted for, may provide
misleading apparent prevalence estimates based on the observed rate of positive tests and not the true disease
prevalence estimates. Methods to estimate the true prevalence of disease, adjusting for the sensitivity and the
specificity of the diagnostic tests are available and can be applied, though, such procedures can be cumbersome to
researchers with or without a solid statistical background. This manuscript introduces a web-based application that
integrates statistical methods for Bayesian inference of true disease prevalence based on prior elicitation for the
accuracy of the diagnostic tests. This tool allows practitioners to simultaneously analyse and visualize results while
using interactive sliders and output prior/posterior plots.

Methods - implementation: Three methods for prevalence prior elicitation and four core families of Bayesian
methods have been combined and incorporated in this web tool. |tPRiors| user interface has been developed with R
and Shiny and may be freely accessed on-line.

Results: |tPRiors| allows researchers to use preloaded data or upload their own datasets and perform analysis on
either single or multiple population groups clusters, allowing, if needed, for excess zero prevalence. The final report is
exported in raw parts either as .rdata or .png files and can be further analysed. We utilize a real multiple-population
and a toy single-population dataset to demonstrate the robustness and capabilities of |tPRiors|.
Conclusions: We expect |tPRiors| to be helpful for researchers interested in true disease prevalence estimation and
who are keen on accounting for prior information. |tPRiors| acts both as a statistical tool and a simplified step-by-step
statistical framework that facilitates the use of complex Bayesian methods. The application of |tPRiors| is expected to
aid standardization of practices in the field of Bayesian modelling on subject and multiple group-based true
prevalence estimation.
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The epidemic volatility index, 
a novel early warning tool 
for identifying new waves 
in an epidemic
Polychronis Kostoulas1*, Eletherios Meletis1, Konstantinos Pateras1, Paolo Eusebi2, 
Theodoros Kostoulas3, Luis Furuya‑Kanamori4, Niko Speybroeck5, Matthew Denwood6, 
Suhail A. R. Doi7, Christian L. Althaus8, Carsten Kirkeby6, Pejman Rohani9, 
Navneet K. Dhand10, José L. Peñalvo11, Lehana Thabane12, Slimane BenMiled13, 
Hamid Sharifi14 & Stephen D. Walter12

Early warning tools are crucial for the timely application of intervention strategies and the mitigation 
of the adverse health, social and economic effects associated with outbreaks of epidemic potential 
such as COVID‑19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually 
simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly 
reported cases per unit of time, ideally per day, and issues an early warning when the volatility change 
rate exceeds a threshold. Data on the daily confirmed cases of COVID‑19 are used to demonstrate 
the use of EVI. Results from the COVID‑19 epidemic in Italy and New York State are presented here, 
based on the number of confirmed cases of COVID‑19, from January 22, 2020, until April 13, 2021. 
Live daily updated predictions for all world countries and each of the United States of America are 
publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 
0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 
(0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main 
epidemic waves in any country or state. EVI’s application to data from the current COVID‑19 pandemic 
revealed a consistent and stable performance in terms of detecting new waves. The application of 
EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning 
systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks.

Early warning tools are crucial for the timely application of intervention strategies and the mitigation of adverse 
health, social and economic e!ects associated with epidemics. Sentinel networks in combination with informa-
tion technology infrastructures in public  health1 provide data for the detection of spatial and temporal aberra-
tions in the expected number of cases for groups of clinical signs and  symptoms2. Several modelling frameworks 
exist for the analysis of such data. For example, the moving epidemic method is used to monitor, among others, 
the start of #u  epidemics3. Further, methods based on seasonality patterns, the link between pathogens and mete-
orological  parameters4 and/or the measurement of vector indices for vector-borne  pathogens5 are also available.
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Bayesian analysis is grounded in the concept of 
evidential learning and knowledge updating. 

Beliefs can be updated based on new evidence.



Bayes’ Theorem

• Let us consider two possible outcomes A and B. The Bayes’ 
theorem provides an expression for the conditional 
probability of A given B, which is equal to:

P(B)
P(B|A)P(A)P(A|B)=



P(B)
)P(B|A)*P(AP(A|B)=

P(T+)
(D+)P(T+|D+)*PP(D+|T+)=

https://youtu.be/hLiL24vL3rg

https://youtu.be/hLiL24vL3rg


PV+, Prevalence = 0.1

• PPV = (0.90 * 0.1) / [(0.90 * 0.1) + ((1 - 0.99) * (1 - 0.1))]

• PPV = 0.09 / [0.09 + (0.01 * 0.9)]

• PPV = 0.09 / 0.099
• PPV = 0.9091



PV+, Prevalence = 0.01

• PPV = (0.90 * 0.01) / [(0.90 * 0.01) + ((1 - 0.99) * (1 - 0.01))]
• PPV = 0.009 / [0.009 + (0.01 * 0.99)]
• PPV = 0.009 / 0.0199
• PPV = 0.4523



PV+, Prevalence = 0.001

• PPV = (0.90 * 0.001) / [(0.90 * 0.001) + ((1 - 0.99) * (1 - 0.001))]
• PPV = 0.0009 / [0.0009 + (0.01 * 0.999)]
• PPV = 0.0009 / 0.010899
• PPV = 0.0826



Prevalence, PV+ &… 

Prevalence PV+

0.1 0.91

0.01 0.45

0.001 0.08



Prevalence, PV+ &… Risk

Prevalence PV+ Risk ratio

0.1 0.9 9

0.01 0.45 45

0.001 0.083 83




